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The plane problem of pure bending of a uniformly inhomogeneous curved beam 
bounded by two arcs of concentric circles and two radii, is considered, It is 
assumed that the material of the beam is isotropic, has a constant Poisson’s rat- 
io and a coordinate-dependent Young’s modulus. It is shown that when the 
Young’s mod&s is defined in a specified manner, then the problem has an 

exact, elementary solution, and the solution is given. 

1. Let us take the center of the circles r = a and I - b(a<b) as the coordinate 
origin, and direct the polar =.-axis along the axis 
of symmetry of the region occupied by the beam 
(see Fig. 1). The angle 2a contained between 
two extreme radial cross sections(end faces) is 
assumed to be arbitrary, but smaller than 23~. 
The load is given in the form of bending moments 
a (per unit area) applied to the end faces 8 = 

f a. The problem is studied in a linear formula- 
tion (it is assumed tha the material undergoes sma- 
11 deformations and obeys the generalixed Ho&e’s 
Law) 

e, = e (sr -PC+, &a = e (aa - par) (1. U 

Yre = 2e (1 + P) t,, 

In the case of the gerneralixed plane state of stress e = t/E and P = v, and in the 
case of a plane deformation e = (1 - G)/E, v = v/(f - v). The condition of com- 
patibility of the deformations has the form bee Cl1 1 

(1. 2) 

In the homogeneous and continuously inhomogeneous beam with the elastic characteris- 
tics E (Young’s modulus) or l&j depending only on the distance r, the stresses are 

the same in all radial cross sections. The stress function depends only on r, i. e. 

F = f (4, 6, = f’ (r)/r, Ge = f” (r), r,.e = 0 (1.3) 

At the curvilinear sides we have u,. = 0, and at the end faces oa reduces to the bend- 
ing moment iR. This yields the final three conditions (see 121, Sect. 24 and 133 ch.IIQ 

f’ (a) = f’ (b) = 0, I (b) - f (a) = @ (1.4) 

2. Let us formulate the problem as followa: 1) to establish what form the function 
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r (r, 0) must assume for the stresses in the beam in question to have the form (1,3), 
and 2) to find the corresponding function f’ and the stres components To do this, 
we must find the solutions of the equation (1.2). i. e. the functions e (r, 0) and f’ (r) 
and to fulfil the conditions ( 1.4). 

We can rewrite the equation (1.2) as follows: 

i 
1’ -+“)+&r+ 
r iI( e -&-,y 11 + r -g- [e (rf” - pf’)] = 0 (2.1) 

The function e must be positive at all points r, 9 of the region occupied by the 
beam since E > 0 , and we allow e to vanish (R = w) only at the end faces@ = 

rto of the beam. 
We shall not analyze the problem in its entirety, restricting ourselves only to indic- 

ating the class of particular cases of inhomogeneity for which tile exact solution can be 
found by elementary methods. We shall seek the solution of (2.1) in the form of a pro- 

duct c = R (r)Q, (0) 

After substitution into (2. l), the variables can be separated and we obtain two equations 
UP+ 7220 = 0 - (2. 2) 

p R” 1 R’ nz - 1 
-- _M 
r R + r2 R + 9 

- f’=O 
1 

where n is real, pure imaginary or zero. Clearly, @ is expressed in terms of the ele- 

mentary functions and f’ can be determined as a general integral of a linear, third or- 

der equation with variable coefficients. Three constants entering this integral can be 

found from the conditions (1.4). In this manner we obtain an expression for the elastic 
characteristic e for which the stresses have the form (1.3) 

e= R(r)(Acosnd+BsinnB), n#O (2.4) 

e= R(r).@ +RO), n=O (2. 5) 

The constants A, B and n and the function R cannot be completely arbitrary, since 

we have, in all cases, e > 0 (except perhaps at the points lying on the end faces 0 = 
*a ). 

When R is defined in an arbitrary manner, then the search for the solution of (2.3) 

encounters difficulties. If however the function R is defined in the form of a power 

function R = rm (m is a real number), then the equation can be solved without any 

difficulty. The solution depends on the roots of a third degree equation obtained from 

(2.3). If none of the roots sj are multiple, then 

j’ = (:1rs1 +. C2rsz + C3rp* 

The simplest cases arise when m = n, m = - n and m = 0 

1) m = n, s1 = 1, s,,g = -. II + v/i - ll (I - p) - p/r* 

2) m =-n, s1= 1, 8,,3 = a&f/l -;“(l-p) - pd 

3) m= n=O, s1 = s2 = 1, sg=-1 

In the last case (formula (2. 5) with R = 1) the distribution of stresses in an inhomo- 
geneous isotropic beam will be the same as in a similar homogeneous isotropic beam. 

We note that the solutions (2.4). (2.5) are not suitable for a hollow cylinder. the 
transverse section of which represents a solid, uncut ring. If we assume that the elastic 
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characteristics of the form (2.4) and f 2.5) exist, it will mean that segments will exist 
in the region of transversecross sect~oo~~ich E < 0, i. e. the soWions will be phy- 
sically meaningiess. 
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